Computer Access Technology /\
\7

Corporation PR 8

2403 Walsh Avenue, Santa Clara, CA 95051-1302 Tel: +1/408.727.6600 Fax: +1/408.727.6622

CATC Request Definition (.req)
and Descriptor Definition (.dsc)
Files Reference Manual

October 16, 2001

COMPUTER ACCESS TECHNOLOGY CORPORATION

CATC Request Definition (.req) and Descriptor
Definition (.dsc) Files Reference Manual

Document Disclaimer

The information contained in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for inaccuracies
that may not have been detected.

CATC reserves the right to revise the information presented in this document
without notice or penalty.

Trademarks and Servicemarks
CATC is a trademark of Computer Access Technology Corporation.

All other trademarks are property of their respective companies.

Copyright

Copyright 2001, Computer Access Technology Corporation (CATC). All rights
reserved.

This document may be printed and reproduced without additional permission, but
all copies should contain this copyright notice.

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

TABLE OF CONTENTS

USB Request Definition (.req) Files1

Structure.ottt iinineiennnereosnnssonnnnsss 1
Entries.coviitiiiiiiiiiinerieeennronennsonnnnss 2
Defines 2
GroupName. 4
GroupTypeo 4
GroupType=Standard 4
GroupType=Class.ttt 4
GroupType=Vendor 5
AlIREQUESES. . . oot 5
Request(...) . ..o 5
EndpointData 6
Request definitions.covviiiiiiiinnnnnnnnnnnns 6
Decoding Definition strings: wValue, windex, and Data. 7
WordValue 7
FormatValue........ i 8
Bitmap. 11
Additional Request Keywords 13
bmRequestTypec i 13
Bytes(X, ¥). o v 13
Color(R,G,B) 13
Databytes(X, ¥) o v oo 13
Depends(...). oo e 15
DeSCriptors . ..o vttt 17
Endian. 18
HIBYTE 18
Length. 18
LOBYTE. 19

Name. . ..o 19
EndpointData Definitionsc0vivnn. 20
Caption . ..o 20
EndpointDirection. i 21
Endpointld 21
EndpointType 21
MaxPacketSize 22
MaxTransferSize. 22

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Nested Request Definitions............coiiiiiinnnnen 23

1) 110 11 1<) 1 15 24

Structure.ottt iiiineienenressnnssssnnnsos 25
Entries.ccoiiiitiiiiiiiininiienneneecnenennnnns 26
DescriptorName i 26
DescriptorType . .. oot 26
DescriptorSubtype 27
ClassCodeot 27
SubclassCode 28
AlIOSTSets . ..ot 28
Offset(...). ot 29
Descriptor definitionscoiiiiiiiiiinn, 29
Decoding Definition Strings., 29
FormatValue, WordValue, and Bitmap 30
Additional Descriptor Keywords 30
BCD . 30

SIZ€ . ot 31

Units . .o 31

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

USB REQUEST DEFINITION (.req)
FILES

Request definition (.req) files are used to configure decoding of class- or vendor-
specific data of any protocol defined for USB. A .req file is a set of instructions that
contains definitions that describe, in USB-specific terms, how to take blocks of data
and break them into fields with consecutive decoding of each field. The data being
decoded can be data in a USB Device Request, or any formatted data that is sent on
an Interrupt or Bulk endpoint of a USB device.

The request definition files are text-based files that are identifiable by their .req ex-
tension. Customized decoding of USB requests is possible by editing files or
creating new definition files. This document describes the components of a .req file
and the format for writing or editing a .req file.

Please refer to the Universal Serial Bus Specification, version 1.1 for details about
USB protocol. The USB specification is available from the USB Implementers
Forum (USB-IF) at http://www.usb.org/.

Structure

A .req file has the following basic structure:

[Defi nes=

{
<Def i ne_0>=<Def i ne_Nane_0>
<Defi ne_1>=<Defi ne_Nane_ 1>
<Def i ne_2>=<Def i ne_Nane_2>

Mo

G oupNane=<nanme>
G oupType=<St andard, C ass, or Vendor>

Al | Request s=

{
<bRequest 0>=<bRequest Nane_ 0>
<bRequest _1>=<bRequest _Nane_1>
<bRequest 2>=<bRequest _Nane_2>

http://www.usb.org
http://www.usb.org

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Request (<bRequest _0>) =
{

}

Request (<bRequest _1>) =
{

}

Request (<bRequest _2>) =
{

}

[Endpoi nt Dat a=
{

Moo

[Endpoi nt Dat a=
{

Mo

Entries

This section describes the basic entries that comprise a .req file.

Note: There must be no white space in between keywords and the equal sign (=) ;
for example: G- oupNane=. However, it is permissible to put white space
between values and the equal sign; e.g., G oupName= C ass or

0x00 = Request Nane. In the case of keywords that require parentheses fol-
lowed by an equal sign, there must not be white space on either side of the paren-
theses: Request (. ..) =.

Def i nes

The Def i nes keyword is an optional entry that is used to associate a numeric
value with a text string. Once the association is set up, those values can be referred
to by name in the request definitions. The Def i nes definition uses the following
format:

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Def i nes=
{

<val ue>=<string>
}

The val ue should be set to the actual value, while St r i ng represents the name
of the unit. An example is found in the sample file Audio.req:

DEFI NES={

0XO1=TERM NAL_UNI T
0X05=TERM NAL_UNI T
0x09=TERM NAL_UNI T
OXOC=TERM NAL_UNI T

0x02=PROCESSI NG UNI T
0x03=PROCESSI NG UNI T

OX04=FEATURE_UNI T
OX06=FEATURE_UNI T
Ox08=FEATURE_UNI T
OXOB=FEATURE_UNI T

0x07=M XER_UNI' T
OX0A=M XER_UNI' T

}

These units can now be referred to by name, instead of by number, in the request
definitions:

W ndex={
H BYTE={
Depends(H BYTE(W ndex)) ={
TERM NAL__UNI T={
For mat Val ue=Term nal |1 D O0x%®2X
}
M XER_UNI T={
For mat Val ue=M xer Unit | D Ox%®2X
}
SELECTOR_UNI T={
For mat Val ue=Sel ector Unit | D Ox%®2X
}
FEATURE_UNI T={
For mat Val ue=Feature Unit 0Ox%®2X
}
PROCESSI NG_UNI T={
For mat Val ue=Processing Unit I D Ox%®92X

}

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

EXTENSI ON_UNI T={
For mat Val ue=Extension Unit | D Ox%®2X

}
}
}

G oupNane

The G oupNane entry defines the name for the group of requests described in the
file. This name also appears in the SETUP field's request decoding context menu.

For example,
G oupNanme=Il magi ng C ass

shows up in the context menu this way:

ENDPI |
e 56 Device Reguest

Decode Imaging Class) Request

=t Request Recipients to Class/Vendor Decading

Search for the nexk SETUP Packet Identifier
I Expart Data

Figure 1: Gr oupNane entry appears in SETUP context
menu

G oupType
The G oupType entry defines the type of requests in the file. There are three (3)

possible settings for the G oupType entry: G oupType=St andar d,
G oupType=d ass, and G oupType=Vendor.

G oupType=St andar d

A set & oupType=St andar d requests defines the standard USB requests. Note
that in the case of defining standard USB requests, there can be only one .req file.
CATC supplies the standard request definitions in the file standard.req.

G oupType=Cl ass

G oupType=0 ass indicates that the file defines a set of class-specific USB
requests. This group type also requires a Cl assCode entry, which specifies the
USB-assigned device class code. For example,

G oupType=Cl ass
Cl assCode=0x03

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

defines the Human Interface Device (HID) class code.

G oupType=Vendor

G oupType=Vendor indicates that the file defines a set of vendor-specific USB
requests. This group type also requires Vendor | Dand Pr oduct | D entries.
These values are used to uniquely identify the Vendor Decoding group when it is
associated with Request Recipients in a trace file. The value for Vendor | Dis the
assigned vendor ID. The value for Pr oduct | Ddoesn't actually have to match the
real product ID for the device. For example:

G oupType=Vendor
Vendor | D=0x0423
Pr oduct | D=0x000D

Al | Request s

The Al | Request s keyword is used to specify the bRequest values for all of
the requests described in the .req file. The Al | Request s definition uses the
following format:

Al | Request s=
{

<bRequest >=<Request NaneSt ri ng>

}

The value bRequest isisthe USB-assigned value, and is represented numerically.
Request NaneSt r i ng is the textual representation of bRequest . It also rep-
resents the name of the request that will appear in the Request Decoding dialog. For
example:

Al | Request s=

{
0x00=REQUEST_NAME_0
0x01=REQUEST NAME 1

}

Note: it's not necessary for the numeric bRequest values to start from zero or to
increase sequentially. In addition, the numeric values may be in decimal or hexa-
decimal.

Request (.. .)

Request (.. .) defines a request listed in the Al | Request s entry. Request
definitions follow the format

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Request (<bRequest >) =
{

}

The bRequest value should match the numeric value assigned to the request in
the Al | Request s entry. For example:

Request (0x00) =
{

}

Request (0x01) =
{

}

Endpoi nt Dat a
Endpoi nt Dat a defines endpoint data decoding.

The basic structure for an Endpoi nt Dat a definition is
Endpoi nt Dat a=

{
[Caption=<string>] .
[Endpoi nt Type=<stri ng>]
[Endpoi nt Direction=I N or QUT]
[Endpoi nt | d=<val ue>] .
MaxPacket Si ze=<i nt eger >
MaxTr ansf er Si ze=<i nt eger >
Dat a=
{
}

}

For more information about Endpoi nt Dat a definitions, please see page 20.

Request definitions

The bulk of a .req file is composed of Request entries, which are the actual
request definitions. This section describes the contents and formatting of a
Request entry.

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Decoding Definition strings: wal ue, W ndex, and Dat a

A request definition may contain three optional decoding definition strings:

wval ue, W ndex, and Dat a. wal ue and W ndex define how the wValue and
wlndex fields of the request are decoded. Dat a specifies how Data fields are
decoded during the request's data stage. All three use the same definition format, as
follows:

<wVal ue, W ndex or Data>=
{

}

If one or more of the definition strings is omitted, then the Request Decoding
applies default decoding.

The contents of the decoding definitions can be built using one or more of these
three basic keywords: Wor dVal ue, For mat Val ue, and Bi t nmap.

Wor dval ue

Use the Wor dVal ue keyword when the field has a defined set of possible values,
and each value has a different meaning. The entries are formatted as an enumerated
list, as follows:

Wor dVal ue=

{
<wVal ue_0>=<Val ue_Meani ng_0>
<wVal ue_1>=<Val ue_Meani ng_1>

}

The possible values for Wal ue are represented numerically. The meanings are
generally represented as text strings. WOr dVal ue entries work similarly to if-then
statements: if Wal ue matches a wwal ue value in the WOr dVal ue list, then the
meaning will appear in the wValue trace field. If the value of wWWal ue doesn't
match a value in the list, then, by default, its numeric value will be displayed in the
wValue trace field. However, this default can also be overridden with a different
type of decoding -- a For mat Val ue entry (see “For mat Val ue” on page 8 for
details) or a Bitmap entry (see “Bi t map” on page 11 for more details).

The following example comes from the wWal ue entry of the hub.req
Set Feat ur e request definition. The figure shows the output that results when
wval ue is 0x0008.

Wor dVal ue={
0x0001=PORT_ENABLE
0x0002=PORT_SUSPEND

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

0x0003=PORT_OVER_CURRENT (Should not clear this
feature!)

0x0004=PORT_RESET (Should not clear this feature!)

0x0008=PORT_POVNER

0x0009=PORT_LOW SPEED (Shoul d not clear this
feature!)

0x0010=C_PORT_CONNECTI ON

0x0011=C _PORT_ENABLE

0x0012=C_PORT_SUSPEND

0x0013=C_PORT_OVER_CURRENT

0x0014=C _PORT_RESET

BRequest
SET FEATURE|PCORT POWER

Figure 2: Resulting trace output when wwal ue
for hub.req's SET_FEATURE is 0x0008

For nmat Val ue

Use For mat Val ue to specify the output formatting of numeric values. A string
can be included in the decoding definition, too. This entry can also be used to
specify default behaviors. Formatting is controlled using standard C language
pri nt f format conversion characters. The structure of For mat Val ue is

For mat Val ue=<stri ng>

The conversion specification is contained within the string. The following example
is taken from the Wl ndex definition for SET_FEATURE in the hub.req file:

0x23={
For mat Val ue=Port # %
}

Here is an example of possible output:

bR equest wiv'alue wil e

SET_FEATURE|FORET_REESET |Faort # 2

Figure 3: Resulting trace output for a For mat Val ue
definition

By changing the For mat Val ue definition as follows,
For mat Val ue=Cheese (0x%®3x)

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

the output changes to this:

SET_FEATURE|FORET_EEESET | Cheese (0x002)

Figure 4: Resulting trace output for the altered For mat Val ue
definition

A For mat Val ue entry can also be used somewhat like the 'else' portion of an if-
else statement to specify the formatting of default behaviors. To do this, place the
For mat Val ue entry inside the definition for which it will act as the default value.
If the request value matches a value that is specified in the definition, then the
meaning for that value will display in the trace field; otherwise, the For mat Val ue
default definition will be used. The following examples are taken from the sample
printer.req file. In the first example, from the GET_DEVI CE_| Drequest definition,
there is no specified format for the default value of wWal ue:

wVal ue={
Depends(bnRequest Type) ={
OxAl={
For mat Val ue=Configuration Index is Ox%04X
}

}

Therefore, the default, unformatted trace output for the wValue field displays as
such:
Figure 5: Default trace

output with no formatting
specifications

we v alu e

However, when For mat Val ue is used to control its appearance, as in the
following example,

wVal ue={
Depends(bnRequest Type) ={
OxAL={
For mat Val ue=Confi guration Index is 0x%04X
}

}
For mat Val ue=GET_DEVICE | D default is %l

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

these results can be achieved:

‘GET_DEVICE_ID default is 0

Figure 6: Default trace output with
formatting specifications

Format Conversion Characters
These are standard C language pri nt f format conversion characters:

Code Type Output
c Integer Character
d Integer Signed decimal integer.
| Integer Signed decimal integer
u Integer Unsigned decimal integer
X Integer Unsigned hexadecimal integer, using “abcdef.”
X Integer Unsigned hexadecimal integer, using “ABCDEF.”

Table 1: Format conversion characters

A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
%and the conversion character to further control argument formatting:

® Flag characters: these are used to further specify the formatting. There are five flag
characters:

* A minus sign (-)will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

* A plus sign (+) will insert a plus sign before a positive signed integer. This only works
with the conversion characters d and i .

* A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i . If both a space and a plus sign are used, the space flag
will be ignored.

* A hash mark (#) will prepend OXx or OX to a hexadecimal number if used with X or X.
* A zero (0) will pad the field with zeros instead of with spaces.

¢ Field width specification: this is a positive integer that defines the field width, in spaces,
of the converted argument. If the number of characters in the argument is smaller than the
field width, then the field is padded with spaces. If the argument has more characters than
the field width has spaces, then the field will expand to accommodate the argument.

10

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Bi t map

Use Bi t map to define the decoding of bit data in a data field. The Bi t map defi-
nition also specifies the output of bit data in the decoding dialog window. The

Bi t map entry allows each bit value to be identified by a text string in the decoded
data output.

Bi t map entries are formatted as follows:

Bi t map=

{
<Bi t #>=<stri ng>
<Bi t #>=<stri ng>

}
This example is taken from the hub.req GET_STATUS definition.

Byt es(2, 3) ={
Endi an=Little
Nane=Port Change bits

Bi t map={
0=C_PORT_CONNECTI ON
1=C_PORT_ENABLE
2=C_PORT_SUSPEND
3=C_PORT_OVER_CURRENT
4=C_PORT_RESET

}

}

fin the tra{:)e ogtput&tl};e decpded Do hEnes Biis
,atatﬁan € ViIewe yposﬂfn‘ 00000000000000|| 3.994 ms
lng € MOouSe€ cursor over tne Dort Change bltS (thES 2_3)

Data ﬁell1d fll)ame-f TE? ac“;’r{ Bit 0: C_PORT CONNECTION
causes the Data tield's too tlp 1 ':_P DRT_EI‘-U'LELE

, , Uit
window to be displayed. The MB e ¢ DORT SUSDEND
C PORT OVER CURRENT

box contains details about the ®g. 4
data, including the decoded Jdpit ¢ PORT RESET
bitmap information. - -

1N PR o B .]
LT - T - B o R

Figure 7: Data field pop-up information box

11

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

The information can also be viewed in
the decoding dialog window. Left-click
on the Control field heading to access Decode Hub Cla _

the Decode...Request command on the Request Recipients ko Class,l"u'ndcur Cecoding
context menu.

5B Device Reguest:

Figure 8: Decode...Request command on the
Selecting the Decode...Request Control field pop-up menu
command opens the decoding dialog
window. The portion of the window that contains the decoded Bitmap data is shown
below.

Data stage (4 hytes)

Fort Status bits (bytes 0-1)

Eit 0: FPORT CONNECTION 1
Eit 1: PORT ENAELE 1
Bit 2: PORT 3ITUSPEND]
Eit 3: FPORT OVER CURRENT]
Eit 4: FPORT RESET]
Eic §: FPORT POWER 1
Bit 9: PORT LOW 3PEED]

Port Change bits (bhytes 2-3)

Bit 0: C PORT CONNECTION]
Bit 1: C PORT ENAELE]
Bit 2: C_PORT SUSPEND]
Bit 3: C_PORT OVER CURRENT]
Bit 4: C _PORT RE3ET]

Figure 9: Bitmap decoding in the decoding dialog
window

12

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Additional Request Keywords

The keywords Def i ne, G oupNane, G oupType, St andar d, C ass,
Vendor, Cl assCode, Vendor | D, Product | D, Al | Request s,
Request (...), wal ue, W ndex, Dat a, Wr dVval ue, For mat Val ue,
and Bi t map have already been covered.

However, there are a number of additional keywords available to further define
requests. This section details the usage of those remaining keywords.

bnRequest Type

Use bnRequest Type to refer to the actual bmRequestType bitmap value. See
“Depends(. ..) ” onpage 15 for examples of its use.

Bytes(x,)

Byt es(X, YY) isused toidentify a field within the Data stream. This field can be
subsequently decoded using one of the decoding keywords. The X and y values
represent the bytes to decode:

Dat a=

{
Bytes(0, 1)=
{ For mat Val ue=The first two bytes are Ox%iX
}

}

A question mark (?) may be used to represent the y value. This will cause data
decoding to start at the byte specified by the X value, and continue all the way to the
last byte in the data. This example starts decoding at byte 5 and also decodes all data
that follows byte 5.

Byt es(5, ?)

Col or (R, G B)

Use Col or (R, G B) to specify a color for the header portion of a Data field. The
color is represented inside the parentheses by its red, green and blue values. For
example,

Col or (255, 0, 0)

will make a red header field.

Dat abyt es(x, V)

Use Dat abyt es(x, V) toidentify a field in the Data stream on which a
Depends(.. .) definition for another Data field should be based.

13

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Its format is the same as for Byt es(X, V), except that “?” cannot be used. See
“Byt es(x, YY) ” onpage 13 for formatting information.

Depends(Dat abyt es(3, 3)) ={
0x03={
Byt es(8, 8) ={
Nane= Type of Ri ngback signalling is

Wor dVval ue={
0x00= Nor nal
0x01= busy

0x02= fast busy
Oxff= Unknown R ng back type

}

For mat Val ue= Reserved for future use Ox%®2X

}
}
0x04={
Byt es(8, 8) ={
Name= Type of connecti on:
Wor dVal ue={
}
Format Val ue= Reserved for future use 0x%92X
}
}
0x05={

Byt es(8, 8) ={
Nane= The R nging Pattern present is
Wor dVval ue={

}

Format Val ue= Reserved for future use 0x%92X
}
Byt es(9, 9) ={
Nane= Size of the String (next n bytes)
Format Val ue= Tine of the incomng call as
delivered via Caller I D Ox%®2X
}
}
}

14

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Depends(...)

Use Depends(. . .) to create a definition that displays a a field or a set of fields
in different ways, depending on certain conditions. It works similarly to a C
language SW t ch statement. The basic structure of a Depends(. . .) definition
is this:

Depends(<keywor d>[&mask val ue>]) =

{
<val ue>=
{
}
[<keyword>= ...] .y
}
Keywords

Keywords that can be used inside the parentheses of a Depends(. . .) definition
are: bmRequest Type, Dat abyt es(m n) ,w ndex, and wal ue. The value
to which the keyword refers is the condition that the decoding depends upon.
Possible values, along with their corresponding decoding definitions, are listed
within the curly braces on the right-hand side of the Depends(. . .) entry. In this
example,

wval ue=
{
Depends(bnmRequest Type) =
{
0x01=
{
Wor dVal ue=
{
0x0000=0ne
}
}
0x02=
{
For nat Val ue=Two %
}
}

}

15

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

if the bMRequest Type value is 0x01, the Wbr dVal ue definition is used to
decode the request; on the other hand, if the value is 0x02, then the
For mat Val ue definition is used.

Default Branches
A default branch can be added to the Depends(. . .) definition:

W ndex=
{
Depends(bnmRequest Type) =
{
0x01=

{

}
For mat Val ue=Undef i ned bnmRequest Type, W ndex is

0x%®2X
}
}
If the value of brRequest Type is 0x01, then the first For mat Val ue defini-

tion is applied. Otherwise, it defaults to the second For mat Val ue definition. The
default definition must be last in the list.

For mat Val ue=Interface # % status requested

Mask Values
Use a bitwise & (AND) mask construct within Depends(. . .) to mask a value:
wval ue=
{
Depends(wval ue&xFF00) =
{
0x0100=
{
Wor dval ue=
{
0x01=Cne
}
}
0x0200=
{

For mat Val ue=Two %

}

16

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

For mat Val ue=Qt her (%09x02X)

}
}

This takes the current value of Wal ue, bitwise ANDs it with the OXFFOO binary
value, and compares the result with the entries within the brackets in order to find
the branch it needs to follow.

Hl BYTE and LOBYTE

Hl BYTE and LOBYTE can be used with Depends(. . .) to mask W ndex and
wVal ue values. The Mask Value example could, alternatively, be written this way:

wval ue=
{
Depends(H BYTE(wVal ue)) =
{
0x01=
{
Wor dVval ue=
{
0x01=0ne
}
}
0x02=
{
For mat Val ue=Two %
}
For mat Val ue=Qt her (%0x02X)
}

}

Descriptors

Use Descri pt or s in a Data construct when the data in the data stage of this
request is a USB-defined descriptor or set of descriptors.

Dat a=
{
Lengt h=?
Descri pt or s=TRUE
}

When the value of Descr i pt or s is TRUE, the Data field will be labelled “De-

scriptors” and the descriptor information can be viewed by positioning the mouse
cursor over the Data field name. This action causes the Data field's tool tip window
to be displayed. The information can also be viewed in the decoding dialog window.

17

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Left-click on the Control field heading to access the Decode...Request command on
the context menu. Selecting the Decode...Request command opens the decoding
dialog window. For more information about displaying descriptor information,
please see USB Descriptor Definition (.dsc) Files on page 25.

Endi an

Use Endi an to specify whether bytes should be presented in little-endian or big-
endian order.

Bytes(2, 3) ={
Endi an=Bi g
Name=Hub Change bits
Bi t map={
0=C_HUB_LOCAL_POVNER
1=C_HUB_OVER_CURRENT
}
}

Alternatively, the Endi an value could be setto Li t t | e, which is the default
value.

H BYTE

Use HI BYTE in conjunction with LOBYTE in order to display both values in 2-byte
wValue and windex fields. HI BYTE refers to the Most Significant Byte. Here is an
example of its use:

wVal ue={
HI BYTE={
For mat Val ue=Cheese %l
}
LOBYTE={
For mat Val ue=, sliced %
}
}

Here is sample output for the example when WWal ue equals 0x0102:

‘Cheese 1, sliced 2

Figure 10: H BYTE and
LOBYTE values displayed

Lengt h

Use Lengt h to represent the length, in bytes, of the data to be decoded. A numeric
value may be used:

18

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Lengt h=1

Set Lengt h to a numeric value when a certain specified amount of data should be
transferred during the data stage of a device request or as a structure on an endpoint.
Use a question mark (?) when an unknown number of bytes can be transferred:

Lengt h="?

In this case, all of the data will be decoded.

LOBYTE
Use LOBYTE in conjunction with Hl BYTE in order to display two values in 2-byte

wValue and windex fields. LOBYTE refers to the Least Significant Byte. Please see
“HI BYTE” on page 18 for examples.

Nane

Use Nane to specify the header for a data field. The Nane string will appear as the
title of the cell representing the data field, and the decoding for the field will appear
as the text for this cell. The Nane string also serves as the title for the decoded bit
data in the Data field’s tooltip window in the case of bitmap decoding. For example,
this code from GET_CONFI GURATI ONin standard.req

Byt es(0, 0) ={
Nanme=Current Configuration
For mat Val ue= configuration # %l

}

could produce this cell:

Current Caonfiguration
canfiguration & 1

Figure 11: NAME as title of data
field cell

Also, if the decoding dialog is launched, there will be two lines representing the
field — the first line will contain the Namne string followed by a colon, and the second
will have the decoding of the field:

N x|

Data stage (1 bytes) : ﬂ

Current cConfiguration (byte 0]
configuration # 1

Figure 12: NAME string in decoding dialog

19

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

See “Bi t map” on page 11 for another example of its use.

Endpoi nt Dat a Definitions

In addition to the Al | Request s entry and the corresponding Request (.. .)
entries, a request definition file can have a set of Endpoi nt Dat a entries. An
Endpoi nt Dat a entry is used to define decoding for a class- or vendor-specific
data structure that can be transferred on USB using an Interrupt or Bulk endpoint,
according to a specific protocol. An example of this is the Hub and Port Change
Bitmap structure that can be transferred on the Interrupt endpoint (called Status
Change endpoint) according to Hub class protocol.

Endpoi nt Dat a entries contain Dat a definitions, which are preceded by some
global definitions for Capt i on, Endpoi nt Di r ect i on, Endpoi nt | d,
Endpoi nt Type, MaxPacket Si ze and MaxTr ansf er Si ze. The basic
structure of an EndpointData entry can be found on page 6.

Caption

Use Capt i on to create an identifying string for the Endpoi nt Dat a decoding
definition. It will appear when the mouse is positioned over the endpoint type/
direction field. For example:

Capti on=Hub St atus Change Endpoi nt

plnterrupt . ADDE JSIRIRIEIE Hul & Port Status Change Bitrmap m

Interrupt Transfer, decoded as Hub Ztatus Change Endpoint

Figure 13: Displayed Capt i on definition

20

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

The Capt i on text will also show up in the Class/Vendor Endpoint Decoding drop-
down list on the Endpoints tab of the Request Recipients and Endpoints dialog box:

Request Recipients and Endpoints <=2 Class ll

Request Recipients Endpoints |

Endpaint ClazzAvendor Endpoint Decoding

Hub Statuz Change Endpoint
Huhb Status Change Endpaint
Address 0x04, Endpoint 0010, 1M Hub Statuz Change Endpoint
Address 0405, Endpaint 0203, 1M Huhb Status Change Endpaint
Address 0x05, Endpoint 0x04, OUT Hub Statuz Change Endpoint

ClazzAvendor Endpoint Decoding:

j Azzign ta Endpaint

- Mo Decoding ----

Hub Statuz Change Endpoint !
—{ Communication Clags Motificatior
Bluetaath HCl Event Packet
Bluetooth ACL or 5C0 Data Packet

QK I Cancel Apply Help

Figure 14: Capt i on text in the Class/Vendor Endpoint
Decoding drop-down list

Endpoi ntDirecti on

Use Endpoi nt Di r ect i on within an Endpoi nt Dat a entry to indicate the
direction of the data. It can be set to | N or OUT:

Endpoi nt Di recti on=0UT

Please refer to Endpoi nt Dat a={. . . } inthe hub.req sample file for a complete
example.

Endpoi nt1d

Use Endpoi nt | d if there is more than one Endpoi nt definition within the file,
each for data of different formats. Endpoi nt | d assigns an arbitrary number that
differentiates the definitions from one another. Please refer to

Endpoi nt Dat a={. . . } in the Bluetooth.req sample file for a complete
example.

Endpoi nt Type

Use Endpoi nt Type to identify the type of endpoint described in the definition.
Endpoi nt Type has two possible values in a .req file: | nt er r upt or Bul k.
Please refer to Endpoi nt Dat a={. . . } in hub.req sample file for a complete
example.

21

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

MaxPacket Si ze

Use MaxPacket Si ze to assign the actual MaxPacketSize value for an endpoint.
Please refer to Endpoi nt Dat a={. . . } in the hub.req sample file for a complete
example.

MaxPacket Si ze=2

MaxTr ansferSi ze

Use MaxTr ansf er Si ze to assign the actual MaxTransferSize value for an
endpoint. Please refer to Endpoi nt Dat a={. . . } inthe hub.req sample file for a
complete example.

MaxTr ansf er Si ze=2

Example
This example is taken from the Bluetooth.req sample file:

Endpoi nt Dat a={

; G obal definitions

Capti on=Bl uetooth ACL or SCO Data Packet
Endpoi nt Type=Bul k

Endpoi nt | d=2

MaxPacket Si ze=64

MaxTr ansf er Si ze=3573

*** Field Definitions start here ***x*x**xx
Dat a={
Lengt h=?

Bytes(0, 1) ={
Nanme=Connecti on Handl e & Fl ags
For mat Val ue= 0x%04X

}

Bytes(2, 3)={
Nane=Dat aTot al Lengt h
For mat Val ue= %

}

Byt es(4, ?)={
For mat Val ue=ACL or SCO Dat a

22

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

}
}
}

Nested Request Definitions

Request entries may be nested when two or more requests with different
bRequest values require the same decoding for WM ndex, wal ue, and Dat a.
This eliminates the need to format the definitions separately for each request;
instead, they may be combined into one Request entry.

Nested Request definitions follow this format:

Request (<bRequest _first>)=

{

Request (<bRequest _second>) =

{

Request (<bRequest | ast >) =

{

}
}

Here is an example of a nested Request entry:

<definitions>

Request (0)=

{
Request (1)=
{
wVal ue=
{
Wor dVal ue=
{
10=Fi rst val ue
20=Second val ue
}
For mat Val ue=Vval ue i s %
}
}
}

For a more detailed, complex example, please refer to Audio.req.

23

COMPUTER ACCESS TECHNOLOGY CORPORATION USB REQUEST DEFINITION (.REQ) FILES
Reference Manual

Comments

Comments can be inserted into both .req and .dsc files. There are no assigned
comment characters; text that doesn't follow the request file structure is simply
ignored. However, you may wish to designate a certain character, such as an asterisk
(*), to signal commented text. For example:

Begi n WordVal ue entry

Wor dVal ue=
{
1=0Cne
2=Two

} *End WordVal ue entry*

The text surrounded by the asterisks will be ignored.

24

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

USB DESCRIPTOR DEFINITION
(.dsc) FILES

Descriptor definition (.dsc) files are used to configure decoding of class- or vendor-
specific descriptors of any protocol. A .dsc file is a set of instructions that contains
definitions that describe, in USB-specific terms, how to take blocks of data and
break them into fields with consecutive decoding of each field. The descriptor def-
inition files are text-based files that are identifiable by their .dsc extension. Custom-
ized decoding of USB descriptors is possible by editing or creating new definition
files.

The .dsc files work in conjunction with .req files in order to display descriptor in-
formation in a trace. A descriptor can be referred to by its Descri pt or Type
when a GET_DESCRI PTORstandard request (or any class- or vendor-specific Get
or Set Descri pt or request, such as GET_HUB_DESCRI PTOR) is executed.
Also, when a CONFI GURATI ON descriptor is requested by the

CET_DESCRI PTOR standard request, a set of descriptors is supposed to be
returned by the USB device. This includes some standard descriptors (e.g.,

| NTERFACE and ENDPQOI NT) and also can include class- and vendor-specific de-
scriptors. The .dsc definitions will work for both of those cases, using the
Descri pt or Type values and/or some other defined values, such as
Descri pt or Subt ype, assCode and Subcl asscode

This document describes the components of a .dsc file and the format for writing or
editing a .dsc file.

Please refer to the Universal Serial Bus Specification, version 1.1 for details about
USB protocol. The USB specification is available from the USB Implementers
Forum (USB-IF) at http://www.usb.org/.

Structure

Descriptor definition files are structured very similarly to request definition files;
however, a .dsc file can contain multiple descriptor definitions (inlcuding the
header, Al | O f set s,and OF f set structures), whereas a request file can contain
only one set of definitions.

Here is the basic structure for a .dsc file:

Descri pt or Name=<nane>

Descri pt or Type=<wal ue>

[Descri pt or Subtype=< ? >]

[A assCode=<cl ass code>] .,

[Subcl assCode=<subcl ass code>] .,

25

http://www.usb.org
http://www.usb.org

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

Al O fsets=
{
<O fset _val ue>=<Ofset _nane>

}

O fset (<O fset_val ue>) =

{

}

Entries

This section describes the basic entries that make up a .dsc file.

Descri pt or Nane

The Descr i pt or Name entry identifies the name for a descriptor definition. The
name is displayed in the Data field, as well as showing up at the top of the displayed
descriptor information.

Descri pt or Name=Exanpl e

ﬂ e | 85| REC|GDD Example Descriptor

Descriptors NMOoffset| Field
Example descriptd______ .

Figure 15: Descri pt or Nane display

Descri pt or Type

The Descri pt or Type entry is a numeric value that identifies a descriptor defi-
nition within in a .dsc file. It should match a wWal ue value in the corresponding
req file’s GET_DESCRI PTOR definition. For example:

From standard.dsc:
Descri pt or Type=0x01

From standard.req (GET_DESCRI PTOR definition):
wVal ue={

HI BYTE={

26

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

Wor dVval ue={

0x01=DEVI CE type
0x02=CONFI GURATI ON t ype
0x04=1 NTERFACE t ype
Ox05=ENDPO NT type

}
Dat a={

Lengt h=?

Descri pt or s=TRUE
}

When wWal ue is 0x01, the decoder will look for a descriptor definition with a
Descri pt or Type value of 0x01. If found, the descriptor information will be
decoded and displayed in the trace output.

Descri pt or Subt ype

This entry is used only in conjunction with a Descr i pt or Type entry. Its value
is the assigned subtype code. This keyword was introduced specifically to support
the descriptor format extension adopted by the Audio device class. Any other class
or vendor descriptor specification based on this extension may utilize the

Descri pt or SubType keyword as well.

Cl assCode

This entry is used only when the referring .req file contains G oupType=C ass.
The O assCode value is the USB-assigned class code. Its value should match the
Cl assCode value in the .req file that references the descriptor definition.

Example from hub.req:

G oupNane=Hub C ass
G oupType=Cl ass
Cl assCode=0x09

Corresponding example from hub.dsc:

Descri pt or Name=HUB
Descri pt or Type=0x29
G assCode=0x09

27

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

Subcl assCode

This entry is used only in conjunction with a Cl assCode entry. Its value is the
USB-assigned subclass code. This keyword was introduced specifically to support
the descriptor format extension adopted by the Audio device class. Any other class
or vendor descriptor specification based on this extension may utilize the

Subcl assCode keyword as well.

All O fsets

The Al | O f set s keyword is used to specify the Of f set values for all of the
requests described in the descriptor definition. The Al | Of f set s definition uses
the following format:

Al O fsets=
{

<O fset _val ue>=<Of set _nane>

}

The value of <OF f set _val ue> is the USB-assigned value, and is represented
numerically. It shows up in the Offset column of the descriptor information box.
<O f set _nane> is the textual representation of the offset value. It also repre-
sents the offset name that will appear in the Field column of the displayed descriptor
information. For example:

Example Descriptor
Offzet| Field |
—————— | === |

0 | bLength |
—————— |-
1 | hDeszcriptorType |
—————— | === |
2 | Examplel |

| |
—————— |-
4 | ExampleZ |
—————— |-——

Figure 16: The offset value and name is
displayed in the Offset and Field columns of the
descriptor information

28

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

Al Ofsets=
{
2=Exanpl el
4=Exanpl e2
}

Note: it's not necessary for the numeric Of f set values to start from zero or to
increase sequentially. In addition, the numeric values may be in decimal or hexa-
decimal.

Ofset(...)

O fset(...) defines an offset listed in the Al | O f set s entry. Offset defini-
tions follow the format

O fset (<O fset_val ue>) =

{
}

The value of <O f set _val ue> should match the numeric value assigned to the
offset in the Al | OF f set s entry. For example:

Ofset(2)=
{

}

Ofset(4)=
{

}

Descriptor definitions

Just as the bulk of a request definition file is made up of Request (. . .) entries,
the main portion of a descriptor definition file is composed of Of f set (.. .)
entries, which contain the actual descriptor definitions. They are structured very
similarly to Request (.. .) entries; therefore, only their differences will be
detailed here.

Decoding Definition Strings

Unlike request definitions, descriptor definitions do not use the keywords wwal ue,
W ndex and Dat a, since all of the descriptor information is data. Instead, the def-
initions are in the form of the contents of a Dat a entry.

29

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

For mat Val ue, Wr dVal ue, and Bi t map

The structure of For mat Val ue, Wor dVal ue, and Bi t map entries is the same
as in a .req file. However, the output for all three is displayed in the Description
column of the descriptor information box. For example:

. Exanpl el description
O fset(2)={
For mat Val ue=This is the description for Exanplel

}
; Exanpl e2 description
O fset(4)={
Wor dVal ue={
0x00=This is the description for Exanple2
}
}
Value | Description

_______ |___________________________________
Ox12 |The =ize of this descriptor 1=z 18 bytes

_______ |___________________________________
Ox01 |Example Descriptor Type

_______ |___________________________________
00100 |This is the description for
| Examplel

_______ | S e o o e e e S e o e
Ox00 |Thiz iz the deszcription for ExampleZ
_______ | o o e
Figure 17: For mat Val ue, Wr dVal ue and Bi t map entries are displayed in
the Description column of the descriptor information box

Additional Descriptor Keywords

In addition to the keywords used in the basic structure of a .dsc file, there are a few
more keywords specific to these files. They are described in this section.

BCD

Use BCDto set up decoding of a Binary-Coded Decimal. The only value for BCD
is TRUE:

BCD=TRUE

Now, with BCD set to TRUE, two conversion specifications can be used in a
For mat Val ue entry, so that both the first byte and the second byte of the Binary-
Coded Decimal can be displayed:

30

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

For mat Val ue=Devi ce conpliant to the USB specification
versi on %X %92X

The output is displayed in the Description column of the descriptor information
box:

Device compliant to the USE
gpecification wversion 1.10

Figure 18: Possible output for BCDO=TRUE
and conversion specification ¥X. 92X

Si ze
Use Si ze to indicate the number of bytes in the field. Example:
Si ze=2

Units

Use Uni t s to take the Offset value and multiply it by the units value; the resulting
value can then be pulled into a For mat Val ue entry. The following example is
taken from the MaxPower description from the CONFI GURATI ON Descriptor
group in standard.dsc:

;. MaxPower description
O fset(8)={

Uni t s=2

For mat Val ue=Maxi mnumpower consunpti on of the device
in this configurationis % mA

}

31

COMPUTER ACCESS TECHNOLOGY CORPORATION USB DESCRIPTOR DEFINITION (.DSC) FILES
Reference Manual

32

	Table of Contents
	USB Request Definition (.req) Files
	Structure
	Entries
	Defines
	GroupName
	GroupType
	GroupType=Standard
	GroupType=Class
	GroupType=Vendor

	AllRequests
	Request(...)
	EndpointData

	Request definitions
	Decoding Definition strings: wValue, wIndex, and Data
	WordValue
	FormatValue
	Bitmap

	Additional Request Keywords
	bmRequestType
	Bytes(x, y)
	Color(R,G,B)
	Databytes(x, y)
	Depends(...)
	Descriptors
	Endian
	HIBYTE
	Length
	LOBYTE
	Name

	EndpointData Definitions
	Caption
	EndpointDirection
	EndpointId
	EndpointType
	MaxPacketSize
	MaxTransferSize

	Nested Request Definitions
	Comments

	USB Descriptor Definition (.dsc) Files
	Structure
	Entries
	DescriptorName
	DescriptorType
	DescriptorSubtype
	ClassCode
	SubclassCode
	AllOffsets
	Offset(...)

	Descriptor definitions
	Decoding Definition Strings
	FormatValue, WordValue, and Bitmap

	Additional Descriptor Keywords
	BCD
	Size
	Units

